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ON THE ASYMPTOTIC METHOD OF "LARGE li-" 

I.A. LUBYAGIN and M.I. CHEBAKOV 

In developing the results in /l/, where an easily realizable method is 
presented for constructing any number of terms of the series expansion 
of the solution for one class of mixed axisymmetric problems of elasticity 
theory by using the method of large 2, a method is described for also 
constructing any number of terms of such an expansion for anotherextensive 
class of integral equations of mixed problems of elasticity theory and 
mathematical physics. The algorithm results in simple arithmetic recursion 
relations which enables the domain of application of the large h method 
to be extended to its theoretical limits and enables the solution to be 
constructed with any degree of accuracy. Two problems on the interaction 
of a stamp with a rectangle are considered as examples, for which certain 
new results are obtained. The large- b method was proposed and 
developed in /Z-S/, etc. 

1. Solution of the integral equation. Many plane mixed problems of the mechanics 
of a continuous medium reduce to solving the integral equation /5/ 

{r@)k(F) dt=nf(z), lzl<l (1.1) 

where h is a dimensionless geometric parameter, f (4 is a known function, and k (Y) is 
the kernel, which can be represented in the form 

k(y)=-lnlyl--F(y), +$dfyri (1.2) 

The last series converges absolutely for lYl< Yo. therefore, the analogous series for 
the function F((t - r)lh) will converge for It I<,<, IT (Q 1 if h> 2/y,. 

It was shown in /5_/ that if j' (7) E LpI-l,llr~ > J/,, then any solution of integral Eq.cl.1) 
from the class L _ Pt 1,11, p> 1 will also be a solution of the integral equation 

-1 

P’&- 

(P= j co(W) 
-1 

We will seek the solution of integreal Eq.tl.3) in the form /5/ 

Ip(t)=,L h-?, (t) 

Then to determine m,(t) we obtain the recursion relation 

(1.3) 
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If the binomial (z - ~)~'-r in the last relationships is represented in the form of a 
polynomial and the order of integration is changed, we then obtain 

Here 

Cki = (- Qk (2i - i)l 
k! (2i -k - i)! 

The singular integral R%(t) is represented in the form of the polynomial /5/ 

n-i-1 ?I+1 
R,,,, (t) = n jzo S,_jt'j (n > O), &+a (t) = n 2 Sdaj+1 ln 2 - ‘) 

j=o 

(1.4) 

(1.5) 

(W 

Lx=- 1, sp=+, sk=j&$- (k>1) 

Substituting (1.6) into (1.4) and changing the order of summation, we obtain the represen- 
tation 

(1.7) 

in which the coefficients CZ.,,,~ and Bmr are determined from the simple recursion relations 

0.8) 

The constants cDmk (m> 1) were calculated by substituting (1.7) into the second relation- 
ship (1.5) when changing from (1.4) to (1.7) and (1.8). 

The constants (0:. in relationships (1.8) are expressed in terms of the right-hand side 
of integral Eq.Cl.1) by means of the formula 

@,h&de&E. -f.D*k, @*O=O (1.9) 
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Taking account of the linear dependence of 'p,,* on P given by the first relationship in 
(1.9), we represent the solution of the initial integral Eq.tl.1) in the form 

The coefficients pm,' are found by the recursion relations from (1.8) in which @ml must 
be replaced by &,,f 

G$ =(2E - ~)~~/(2~)!! (1.11) 

and the coefficients a,,,$* and fLja are found from the recursion relations (1.8) in whi& 

%J and f&J must be replaced, respectively, by o+,,J~ and ,%,,J* , where UI,," = me" and (De". 
is determined by the second, third, and fourth relationships in (1.9). 

To find the integral characteristic P of the solution of the integral Eq.tl.1) we use the 
second equality of (1.3), then 

(1.12) 

In a number of cases it is useful to know the following integral characteristic also: 

1 
M=S Q(t)& (1.13) 

-1 

Substituting the first relationship of (1.101 into (1.131, we obtain 

(1.14) 

It is seen that all the desired quantities associated with the solution of integral Eq. 
(1.1) can be expressed in terms of elementary functions. The constants %k and p%?, 
representable in the form of integrals of f(t), are in the solution. In the case when f(t) 
is a polynomial, these integrals are taken in explicit form. 

We obtain from the convergence conditions for the series (1.2) that the solution of 
integral Eq.cl.1) by the method described can be obtained for A> 2/Y, where Y, is the 
radius of convergence of the series in (1.2). 

2. Examples, To illustrate the effectiveness of the method, let us consider the plane 
problem of the interaction of a stamp with an elastic rectangle. Some of the results obtained 
here for this problem are also of independent interest. In a Cartesian X,Y coordinatesystem 
let a rectangle occupy the domain O< y<,<, /I I< b. A stamp with a flat base is impressed 
by an amount 6 without friction into the face Y =h on a segment Ix/< a. The conditions 
for no normal displacements and shear stresses are given on the faces Y =0 and Ixl=b 
(problem A). Rigid clamping conditions can also be examined on the face y=o (problem B). 
These and problems of analogous formulation were also considered elsewhere (for instance, 



/6-U/, etc.). 
The problems formulated reducetosolving the integral equation 

K(u)= chZe--1 
~(sh&+ 2~) (problem A) 

K(u)= 
2xsh2y-4u 

a(2xch2s+1+++4G)' x = 3 -4v (problem B) 

where P(r) =$ (r/s) is the contact stress under the stamp, !J is the shear modulus, v is f 
Poisson's ratio, and Q is the force acting on the stamp. 
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The solution of integral Eq.(2.1) is connected with the solution of (1.1) for f(z) = 1 
with the kernel (2.2) by the relationship 

0.4 

(I* 

0.8 0.65 

Q=$$Q*, Q*=+-q)-* 

(the quantity P is determined by the expression in the parentheses in (1.3)). 
The kernel (2.2) can be represented in the form (1.21, where (& are Bernoulli numbers) 

Using the results of Sect.1 we obtain for the problems in question 

(2.3) 

where fi,~' are evaluated from (1.8) by recursion relations in which &XXJ must be replaced 

by J&r, and @,,zk is taken from (l.ll), while pj$ are evaluated by‘formulas from (1.12). 
Formulas (2.3) are written, to terms 0 (I?N-8) and the value of N is selected as a func- 

tion of the given accuracy. 
As numerical experiments showed, the convergence of the method (the selection of the 
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value of N) is independent of the parameter E and improves as h increases. The solution can 
here be obtained to any degree of accuracy for h>l. It is important to note that the coef- 
ficients of powers of h-r are sign-variable in the sums from (2.3). 

To obtain a given accuracy, l%, say, we should take N = 3 for & = 2, N = 6 for h= 
1.3, N = 17 for h=1.2, and N=26 for x=1.15, in (2.3). 

To demonstrate the convergence of the large- h method for problem A, values of the 
quantity 0' characterizing the stiffness of the rectangle and the magnitudesofthe dimension- 
less contact stresses under the stamp 

are presented inthetable for 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

certain values of the parameters 1, N, 7 and fi = b/a = 1.5. 

A non-monotonic dependence of the stiffness of the 
rectangle (the quantity Q*) on the parameter B is found for a 
fixed value of I as a result of the investigations performed. 
The dependence of Q* on fl for different 1 is shown in the 
figure for problem A (the solid line) and B (the dashed line). 
It is seen that the rectangle has maximum stiffness for definite 
values of b in both problems, and the stiffness decreases and 
tends to a limit value corresponding to problem for a layer as 
B increases further. It should be emphasized that as 0-w 
in problem B the decreases in Q* proceeds much more rapidly 
than in problem A. 
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